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1  Introduction

An iterative process is the repeated application 
of a procedure where each step is applied to 
the output of the previous step (Figure 1). 
Mathematically, an iterative process is deý ned 
as a rule that describes the action that is to be 
repeatedly applied to an initial value x

0
. The 

outcome of an iterative process constitutes an 
orbit set and the values of this set are referred orbit set and the values of this set are referred orbit set
to as the points of the orbit. Thus the orbit O
that rises from the iterated application of a 
rule F to an initial value is written as: F to an initial value is written as: F OFOFO (x

0
)

0
)

0
. 

For example, consider the following rule: 
F : x

n+1
 = x

n
 + 2. This rule indicates that the 

next value of the orbit x
n+1

 is calculated by 
adding 2 to the previous value. If x

0
 = 0 then 

the application of F onto F onto F x
0
 will be OFOFO (0(0( ) = 0) = 0

{0, 2, 4, 6, 8,é}.  This is a very simple orbit, 
but iterative processes have the potential to 
produce fascinating orbits, some of which 
can be used to generate interesting sounds if 
appropriately mapped onto the parameters of a 
sound synthesis algorithm.

Figure 1. An iterative process whereby the output is 
fed back to the input.

The outcome of iterative processes 
tends to exhibit four types of behaviour: (a) 
stability to þ xed value, (b) oscillation between 
speciþ c values, (c) chaotic behaviour and (d) 
explosion to inþ nity. The two latter cases are 
of special interest in computer music research 
because they open up new territory for the 
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Abstract

Musicians have long been interested in using 
iterative processes to aid the composition 
of musical forms (macrostructure) and to 
synthesize sounds (microstructure). This 
paper introduces a new sound synthesis 
method exploring the non-linear behaviour of 
two iterative cross-coupled digital oscillators. 
It begins with a brief introduction to iterative 
systems followed by background information 
on previous attempts at using them for 
synthesizing sounds (e.g. feedback frequency 
and amplitude modulations).  Next, it introduces 
our synthesis method and brieþ y explains how 
it has been implemented in a system for real-
time composition and performance. The paper 
concludes with a discussion on how the system 
has been put into practice to compose and 
perform a number of works.
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exploration of new composition methods 
and synthesis techniques. There have been a 
number of attempts at exploring the behaviour 
of iterative processes in music, notably 
those exhibiting chaotic behaviour (Pressing 
1988; Bidlack 1992). A brief survey on the 
application of iterative processes in musical 
composition can be found in Miranda (2001). 
Less attention has been paid, however, to 
the potential of iterative processes for sound 
synthesis. The chaotic iterative processes that 
have been studied in sound synthesis include 
the sine map (F : F : F xn+1 = sin(r x xn), where r is r is r
a scaling constant) and the logistic map (F
: xn+1 = r x xn x (1 - xn), where r is a constant r is a constant r
representing the growth rate), both explored 
by Di Scipio (1996, 2002). There is also the 
Mandelbrot set (F : F : F xn+1 = xn

2 + c, where c is a 
complex constant), which has been explored 
by Dobson and Fitch (1995). In these cases, 
the orbits are either used to control the 
parameters of sound synthesis algorithms or 
are relayed directly as sound samples. This 
paper, however, presents a slightly different 
approach to exploring iterative processes in 
sound synthesis: the function F is replaced by F is replaced by F
a digital oscillator.

2  Feedback digital oscillators

The digital oscillator is a fundamental 
component in many sound synthesis systems 
(Miranda 2002). As implemented on a 
computer, a digital oscillator often works by 
repeating a template waveform, stored on a 
lookup table. The speed at which the lookup 
table is scanned deý nes the frequency of the 
sound. Although this waveform does not 
necessarily need to be a sinusoid, for the sake 
of clarity we have chosen to focus solely on 
sinusoidal oscillators in this paper.

An oscillator normally requires the 
speciþ cation of three parameters: frequency, 
amplitude and phase. An iterative process is 
created if the output of an oscillator is fed 

back to one of its own inputs. Two types 
of iterative processes like this have been 
explored in sound synthesis technology, 
depending on the input to which the output of 
the oscillator is fed back: Feedback Amplitude 
Modulation (FAM), if the oscillatorõs output 
is fed back to its own amplitude [1] and 
Feedback Frequency Modulation (FFM), if 
the oscillatorõs output is fed back to its own 
frequency [2]: 

where fxfxf  is the frequency of the sine wave x is the frequency of the sine wave x
oscillator and I is the modulation index, or in I is the modulation index, or in I
this case, the feedback factor. In equation [2] 
the product (I x fxfxf ) is the amount of frequency 
deviation from the carrier frequency. In 
equation [1] the feedback signal is converted 
from bipolar to unipolar. This is a case of 
classic amplitude modulation where the 
modulating signal takes only positive values 
in the range between 0 and 1. To accomplish 
this conversion, an offset +1 is added to the 
bipolar signal, which is then normalised by 
dividing by two.  

Risset was probably the ý rst to employ 
a feedback oscillator in sound synthesis in the 
late 1960s at Bell Telephone Laboratories in 
the USA. In 1969 he published an algorithm 
where the output of the oscillator was fed 
back to its own amplitude input, resulting in 
FAM (Risset 1969). Various implementations 
of feedback oscillators have appeared since 
then, including an FFM scheme patented by 
Yamaha  (Chowning et al. 1986).

3  Cross-coupled oscillators

We have extended the concepts of FAM 
and FFM by employing two cross-coupled 
oscillators instead of a single oscillator. In this 
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where S is the scaling factor: -1 Ò S is the scaling factor: -1 Ò S S < 1. If S < 1. If S S = S = S
0.5 then the signals from both oscillators are 
heard with equal contribution to the resulting 
sound. Values equal to 0.0 or 1.0 output the 
signal of only one of the oscillators.

4  Auditioning nonlinear 
phenomena

Cross-coupled oscillators are interesting 
because they allow for the exploration 
of nonlinear phenomena to synthesise 
new sounds with interesting micro-
temporal properties that are very difý cult, 
if not impossible, to produce using other 
synthesis methods. In order to gain a better 
understanding of these phenomena with 
respect to sound synthesis, we have tested 
a number of settings on a trial-and-error 
basis, but in a systematic fashion. We looked 
primarily for initial values that produced 
unstable behaviour. 

The system displayed the typical 
nonlinear phenomena that one would normally 
expect to observe in a dynamic system. 
Three out of the four types of outcomes for 
iterative processes mentioned earlier could be 
observed here: (a) stability to a ý xed value, 
(b) oscillation between speciý c values, and (c) 
chaotic behaviour.

From our own subjective assessment, 
the most interesting of the three conþ gurations 
of cross-coupled oscillators proved to be 
CFFM. CFHM also produced interesting 
sounds, probably due to its asymmetrical 
structure. On the whole, CFAM produced 
less interesting sounds. From here on 
our discussion will focus on the CFFM 
conþ guration.

The CFFM conþ guration proved 
to have a strong dependency on the initial 
conditions, which is a typical characteristic 
of dynamic systems. There are four different 

way, one oscillator functions as the modulator 
of the other and vice-versa. Two feedback 
factors, referred to as cross-modulation 
indices, control the amount of output signal 
that is fed from one oscillator to the input of 
the other. At the output stage a scaling factor
controls the contribution of each oscillator to 
the synthesised sound.

There can be three possible 
coný gurations of cross-coupled oscillators: 
(a) Cross-Feedback Amplitude Modulation 

(CFAM)
(b) Cross-Feedback Frequency Modulation 

(CFFM)
(c) Cross-Feedback Hybrid Modulation 

(CFHM)
Whereas in CFAM the output of an oscillator 
is fed to the amplitude input of the other, 
and vice-versa [3], in CFFM the output of 
an oscillator is fed to the frequency input of 
the other, and vice-versa [4]. Finally, there is 
CFHM, where the output of the one oscillator 
is fed to the amplitude input of the other, while 
the output of the second oscillator is fed to the 
frequency input of the ý rst [5]:

where, f
x

f
x

f and f
y

f
y

f are the frequencies of the two 
sine-wave oscillators, and I

x
 and I

y
 are the 

feedback factors, one for each oscillator.
The output scaling factor controls 

the amplitude of the signals relayed by each 
oscillator to the output as follows [6]:
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initial variables: the central frequencies, f
x

f
x

f
and f

y
f
y

f , of the two oscillators and the feedback 
factors, I

x
 and I

y
. The two frequencies played 

a less signiþ cant role in the exhibition of 
nonlinear phenomena. Most important in this 
algorithm are the feedback factors I

x
 and I

y
, 

where even subtle changes (e.g. ~0.001 %) 
are capable of producing completely different 
sounds. 

Stability to a þ xed value produced 
monotonous buzz-like sounds commonly 

found in standard AM and FM synthesis. 
The stabilisation of the system emerged 
from either the þ rst iteration or after some 
cycles. In the latter case, the number of 
iterations the system needed to stabilise was 
unpredictable. Stabilisation often occurred 
when experimenting with small values for the 
feedback factors, I

x
 and I

y
, but also occurred 

unexpectedly with larger values. This is, 
however, a general property of dynamic 
systems: regions of order can be found within 
chaos as well as chaos emerging within areas 
of order. The spectrogram of a sound from 
this class of behaviour is shown in Figure 2. 
This sound exhibits initial chaotic behaviour 
and after around 700 milliseconds it stabilises 

unexpectedly to a þ xed spectrum. The values 
producing this sound were: fxfxf =60Hz, fy, fy, f = 60Hz, 
Ix= 10.58, I

y
= 10.58, I

y
= 10.58, I = 18, S = 0.5.

Oscillatory and chaotic behaviour 
produced sounds with various micro-temporal 
properties ranging from micro-þ uctuations 
and wild turbulences to ócoloured noisesô (i.e. 
white noise coný ned to a narrow frequency 
band). Some sounds, exhibiting micro-
þ uctuations at lower rates, were reminiscent 
of various natural phenomena, such as sounds 

of burning, air or water streams, rustling trees 
and insect-like sonorities (Figures 3 and 4). 
The spectrum of an insect-like sonority is 
shown in Figure 3. The values to produce this 
sound were: fxfxf =107Hz,  fy fy f = 3.21Hz, Ix= 12214, 
I

y
= 6.12, S = 0.5. The spectrum of a water S = 0.5. The spectrum of a water S

stream-like sonority is shown in Figure 4. The 
values producing this sound were: fxfxf =93Hz, fyfyf = 

104.16Hz, Ix= 13.16, I
y
= 7, S = 0.5S = 0.5S

Special attention had to be paid to the 
role of the feedback factors, Ix and I

y
. Higher 

values forced the model to produce various 
ôcoloured noisesõ. The spectrograms of sounds 
from oscillatory and chaotic behaviours are 
shown in Figures 5 and 6 respectively. The 
sound of Figure 5 oscillates between different 

Figure 2. The 
spectrogram 
of a sound 
exhibiting 
stability to 
ý xed value 
behaviour.




