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Abstract. Pulsed Melodic Processing (PMP) is a computation protocol that utilizes 

musically-based pulse sets (“melodies”) for processing – capable of representing the 

arousal and valence of affective states. Affective processing and affective input/output 

are key tools in artificial intelligence and computing. In the designing of processing 

elements (e.g. bits, bytes, floats, etc.), engineers have primarily focused on the 

processing efficiency and power. They then go on to investigate ways of making them 

perceivable by the user/engineer. However Human-Computer Interaction research - and 

the increasing pervasiveness of computation in our daily lives – supports a 

complementary approach in which computational efficiency and power are more 

balanced with understandability to the user/engineer. PMP allows a user to tap into the 

processing path to hear a sample of what is going on in that affective computation, as 

well as providing a simpler way to interface with affective input/output systems. This 

requires the developing of new approaches to processing and interfacing PMP-based 

modules. In this chapter we introduce PMP and examine the approach using three 

example: a military robot team simulation with an affective subsystem, a text affective-

content estimation system, and a stock market tool.  

Keywords: Human-Computer Interaction, Music, Affective, Boolean Logic, Neural 

Networks   

1   Introduction 

This chapter proposes the use of music as a processing tool for affective 

computation in artificial systems. It has been shown that affective states (emotions) 

play a vital role in human cognitive processing and expression (Malatesa et al. 2009): 

 

1. Universal and Enhanced Communication – two people who speak different 

languages can more easily communicate basic states such as happy, sad, 

angry, and fearful. 

2. Internal Behavioral modification - a person’s internal emotional state will 

affect the planning paths they take. For example it can reduce the number of 

                                                           
 

 



possible strategies in certain situations – if there is a snake in the grass, fear 

will cause you to only use navigation strategies that allow you to look down 

and walk quietly. Also pre- and de-emphasising certain responses: for 

example if a tiger is chasing you, fear will make you keep running and not 

get distracted by a beautiful sunset, or a pebble in your path. 

3. Robust response – in extreme situations the affective reactions can bypass 

more complex cortical responses allowing for a quicker reaction, or allowing 

the person to respond to emergencies when not able to think clearly – for 

example very tired, or in severe pain, and so forth.  

 

As a result, affective state processing has been incorporated into artificial intelligence 

processing and robotics (Banik et al. 2008). The issue of developing systems with 

affective intelligence which also provide for greater user-transparency is what is 

addressed in this chapter. Music has often been described as a language of emotions 

(Cooke 1959). There has been work on automated systems which communicate 

emotions through music (Livingstone et al. 2007) and which detect emotion 

embedded in music based on musical features (Kirke and Miranda 2011). Hence the 

general features which express emotion in western music are known.  

Before introducing these, affective representation will be briefly discussed. The 

dimensional approach to specifying emotion utilizes an n-dimensional space made up 

of emotion “factors”. Any emotion can be plotted as some combination of these 

factors. For example, in many emotional music systems (Kirke and Miranda 2009) 

two dimensions are used: Valence and Arousal. In that model, emotions are plotted on 

a graph (see Figure 1) with the first dimension being how positive or negative the 

emotion is (Valence), and the second dimension being how intense the physical 

arousal of the emotion is (Arousal). For example “Happy” is high valence, high 

arousal affective state, and “Stressed” is low valence high arousal state.  

 
Fig. 1: The Valence/Arousal Model of Emotion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Previous research (Juslin 2005) has suggested that a main indicator of valence is 

musical key mode. A major key mode implies higher valence, minor key mode 

implies lower valence. For example the overture of The Marriage of Figaro opera by 

Mozart is in a major key; whereas Beethoven’s melancholy “Moonlight” Sonata 

movement is in a minor key. It has also been shown that tempo is a prime indicator of 

arousal, with high tempo indicating higher arousal, and low tempo - low arousal. For 

example: compare Mozart’s fast overture above with Debussy’s major key but low 

tempo opening to “Girl with the Flaxen Hair”. The Debussy piano-piece opening has 

a relaxed feel – i.e. a low arousal despite a high valence.  

Affective Computing (Picard 2003) focuses on robot/computer affective 

input/output. Whereas an additional aim of PMP is to develop data streams that 

represent such affective states, and use these representations to internally process data 

and compute actions. The other aim of PMP is more related to Picard’s work – to aid 

easier sonification of affective processing (Cohen 1994) for transparency in HCI, i.e. 

representing non-musical data in musical form to aid its understanding. Related 

sonification research has included tools for using music to debug programs [10].  

 

2  PMP Representation of Affective State 

 
Pulsed Melodic Processing (PMP) is a method of representing affective state using 

music. In PMP the data stream representing affective state is a series of pulses of 10 

different levels with a varied pulse rate. This rate is called the “Tempo”. The pulse 

levels can vary across 12 values. The important values are: 1,3,4,5,6,8,9,10,11,12 (for 

pitches C,D,Eb,E,F,G,Ab,A,Bb,B). These values represent a valence (positivity or 

negativity of emotion). Values 4, 9 & 11 represent negative valence (Eb, Ab, Bb are 

part of C minor) e.g. sad; and values 5, 10,& 12 represent positive valence (E, A, B 

are part of C major), e.g. happy. The other pitches are taken to be valence-neutral. For 

example a PMP stream of say [1,1,4,4,2,4,4,5,8,9] (which translates as 

C,C,Eb,Eb,C#,Eb,Eb,E,G,Ab) would be principally negative valence since most of 

the notes are in the minor key of C. 

The pulse rate of a stream contains information about arousal. So 

[1,1,4,4,2,4,4,5,8,9] transmitted at maximum pulse rate, could represent maximum 

arousal and low valence, e.g. “Anger”. Similarly [10,8,8,1,2,5,3,1] (which translates 

as A,G,G,C,D,E,C,C) transmitted at a quarter of the maximum pulse rate could be a 

positive valence, low arousal stream, e.g. “Relaxed” (because it is in the major key of 

C). If there are two modules or elements both with the same affective state, the 

different note groups which go together to make up that state representation can be 

unique to the object generating them. This allows other objects, and human listeners, 

to identify where the affective data is coming from. 

In performing some of the initial analysis on PMP, it is convenient to utilize a 

parametric form, rather than the data stream form. The parametric form represents a 

stream by a Tempo-value variable and a Key-value variable. The Tempo-value is a 

real number varying between 0 (minimum pulse rate) and 1 (maximum pulse rate). 

The Key-value is an integer varying between -3 (maximally minor) and 3 (maximally 

major). 

 



3  Musical Logic Gate Example 
 

Three possible PMP gates will now be examined based on AND, OR and NOT 

logic gates. The PMP versions of these are respectively: MAND, MOR and MNOT 

(pronounced “emm-not”), MAND, and MOR. So for a given stream, the PMP-value 

can be written as mi = [ki, ti] with key-value ki and tempo-value ti. The definitions of 

the musical gates are (for two streams m1 and m2): 

 

MNOT(m) = [-k,1-t]       (1) 

m1 MAND m2 =  [minimum(k1,k2), minimum(t1,t2)]   (2) 

m1 MOR m2 = [maximum(k1,k2), maximum(t1,t2)]   (3) 

 

These use a similar approach to Fuzzy Logic (Marinos 1969). MNOT is the 

simplest – it simply reverses the key mode and tempo – minor becomes major and fast 

becomes slow, and vice versa. The best way to get some insight into what the 

affective function of the music gates is it to utilize music “truth tables”, which will be 

called Affect Tables here. In these, four representative state-labels are used to 

represent the four quadrants of the PMP-value table: “Sad” for [-3,0], “Stressed” for [-

3,1], “Relaxed” for [3,0], and “Happy” for [3,1]. Table 1 shows the music tables for 

MAND and MNOT. 

 

Table 1: Music Tables for MAND and MNOT 

MAND MNOT 

State 

Label 1 

State 

Label 2 

KT-

value 

1 

KT- 

value 

2 

MAND 

value 

State 

Label 

State 

Label 

KT-

value 

MNOT 

value 

State 

Label 

Sad Sad -3,0 -3,0 -3,0 Sad Sad -3,0 3,1 Happy 

Sad Stressed -3,0 -,1 -3,0 Sad Stressed -3,1 3,0 Relaxed 

Sad Relaxed -3,0 3,0 -3,0 Sad Relaxed 3,0 -3,1 Stressed 

Sad Happy -3,0 3,1 -3,0 Sad Happy 3,1 -3,0 Sad 

Stressed Stressed -3,1 -3,1 -3,1 Stressed  

Stressed Relaxed -3,1 3,0 -3,0 Sad 

Stressed Happy -3,1 3,1 -3,1 Stressed 

Relaxed Relaxed 3,0 3,0 3,0 Relaxed 

Relaxed  Happy 3,0 3,1 3,0 Relaxed 

Happy Happy 3,1 3,1 3,1 Happy 

 

 

Taking the MAND of two melodies, the low tempos and minor keys will dominate 

the output. Taking the MOR of two melodies, then the high tempos and major keys 

will dominate the output. Another way of viewing this is that MAND requires all 

inputs to be “optimistic and hard-working” whereas MOR is able to “ignore” inputs 

which are “pessimistic and lazy”. Another perspective: the MAND of the melodies 

from Moonlight Sonata (minor key, low tempo) and the Marriage of Figaro Overture 

(major key, high tempo), the result would be mainly influenced by Moonlight Sonata.  

However if they are MOR’d, then the Marriage of Figaro Overture would dominate. 

The MNOT of Marriage of Figaro Overture would be a slow minor key version. The 



MNOT of Moonlight Sonata would be a faster major key version. It is also possible to 

construct more complex music functions. For example MXOR (pronounced “mex-

or”): 

 

m1 MXOR m2 = (m1 MAND MNOT(m2)) MOR (MNOT(m1) MAND m2)  (5) 

 

The actual application of these music gates depends on the level at which they are 

to be utilized. The underlying data of PMP (putting aside the PMP-value 

representation used above) is a stream of pulses of different heights and pulse rates.  

At the digital circuit level this can be compared to VLSI hardware spiking neural 

network systems (Indiveri et al. 2006) or VLSI pulse computation systems. A key 

difference is that the pulse height varies in PMP, and that specific pulse heights must 

be distinguished for computation to be done. But assuming this can be achieved, then 

the gates would be feasible in hardware. It is probable that each music gate would 

need to be constructed from multiple VLSI elements due to the detection and 

comparison of pulse heights necessary.  

The other way of applying at a low level, but not in hardware, would be through 

the use of a virtual machine. So the underlying hardware would use standard logic 

gates or perhaps standard spiking neurons. The idea of a virtual machine may at first 

seem contradictory, but one only needs to think back twenty years when the idea of 

the Java Virtual Machine would have been unfeasible given current processing speeds 

then. In 5-10 years current hardware speeds may be achievable by emulation; and 

should PMP-type approaches prove useful enough, would provide a practical 

implementation. 

A simple application is now examined. One function of affective states in 

biological systems is that they provide a back-up for when the organism is damaged 

or in more extreme states (Cosmides and Tooby 2000). For example an injured person 

who cannot think clearly, will still try to get to safety or shelter. An affective 

subsystem for a robot who is a member of a military team is now examined; one that 

can kick in or over-ride if the higher cognition functions are damaged or deadlocked. 

Figure 2 shows the system diagram. A group of mobile robots with built-in weapons 

are placed in a potentially hostile environment and required to search the environment 

for enemies; and upon finding enemies to move towards them and fire on them. The 

PMP affective sub-system in Figure 2 is designed to keep friendly robots apart (so as 

to maximize the coverage of the space), to make them move towards enemies, and to 

make them fire when enemies are detected.  

 
 

Fig. 2: Affective Subsystem for Military Multi-robot System  
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The modules in Figure 2 are “DetectOther”, “FriendFlag”, “MOTOR”, and 

“WEAPON”. “DetectOther” emits a regular minor mode melody; then every time 

another agent (human or robot) is detected within firing range, a major-key mode 

melody is emitted. This is because detecting another agent means that the robots are 

not spread out enough if it is a friendly, or it is an enemy if not. “FriendFlag” emits a 

regular minor key mode melody except for one condition. Other friends are 

identifiable (visually or by RFI) - when an agent is detected within range, and if it is a 

friendly robot – this module emits a major key mode melody. “MOTOR” – this unit, 

when it receives a major key note, moves the robot forward one step. When it receives 

a minor key note, it moves the robot back one step. “WEAPON” - this unit, when it 

receives a minor key note, fires one round. The weapon and motor system is written 

symbolically in equations (4) and (5): 

 

WEAPON = DetectOther MAND MNOT(FriendFlag)    (4) 

MOTOR = WEAPON MOR MNOT(DetectOther)   (5) 

 

Table 2: Theoretical Effects of Affective Subsystem 

Detect 

Other 

Friend 

Flag 

Detect 

Other- 

Value 

Friend 

Flag- 

Value 

MNOT 

(Friend 

Flag) 

MAND 

Detect 

Other 

WEAPON  MNOT 

(Detect 

Other) 

MOR 

WEAPON 

MOTOR 

Sad Sad -3,0 -3,0 3,1 -3,0 inactive 3,1 3,1 Fast  

forwards 

Relaxed Sad 3,0 -3,0 3,1 3,0 Firing -3,1 3,1 Fast  
forwards 

Relaxed Relaxed 3,0 3,0 -3,1 -3,0 Inactive -3,1 -3,0 Slow 

back 

Happy Stressed 3,1 -3,1 3,0 3,0 Firing -3,0 3,0 Slow 

forwards 

Happy Happy 3,1 3,1 -3,0 -3,0 inactive -3,0 -3,0 Slow 

back 

 
 

Using Equations (1) and (2) gives the theoretical results in Table 2. The 5 rows 

have the following interpretations: (a) if alone continue to patrol and explore; (b) If a 

distant enemy is detected move towards it fast and start firing slowly; (c) If a distant 

friendly robot is detected move away so as to patrol a different area of the space; (d) 

If enemy is close-by move slowly (to stay in its vicinity) and fire fast; (e) If a close 

friend is detected move away. This should mainly happen (because of row c) when 

robot team are initially deployed and they are bunched together, hence slow 

movement to prevent collision. 

 

To test in simulation, four friendly robots are used, implementing the PMP-value 

processing described earlier, rather than having actual melodies within the processing 

system. The robots using the PMP affective sub-system are called “F-Robots” 

(friendly robots).  The movement space is limited by a border and when an F-Robot 

hits this border, it moves back a step and tries another movement. Their movements 

include a perturbation system which adds a random nudge to the robot movement, on 

top of the affectively-controlled movement described earlier. The simulation space of 



is 50 units by 50 units. An F-Robot can move by up to 8 units at a time backwards or 

forwards. Its range (for firing and for detection by others) is 10 units. Its PMP 

minimum tempo is 100 beats per minute (BPM), and its maximum is 200 BPM. These 

are encoded as a tempo value of 0.5 and 1 respectively. The enemy robots are placed 

at fixed positions (10,10), (20,20) and (30,30).  

The F-robots are placed at initial positions (10,5), (20,5), (30,5), (40,5), (50,5)– i.e. 

they start at the bottom of the space. The system is run for 2000 movement cycles – in 

each movement cycle each of the 4 F-Robots can move. 30 simulations were run and 

the average distance of the F-Robots to the enemy robots was calculated. Also the 

average distances between F-Robots was calculated. These were done with a range of 

10 and a range of 0. A range of 0 effective switches off the musical processing. The 

results are shown in Table 3. It can be seen that the affective subsystem keeps the F-

Robots apart encouraging them to search different parts of the space. In fact it 

increases the average distance between them by 72%. Similarly the music logic 

system increases the likelihood of the F-Robots moving towards enemy robots. The 

average distance between the F-Robots and the enemies decreases by 21% thanks to 

the melodic subsystem. These results are fairly robust with coefficients of variation 

between 4% and 2% respectively across the results. Figures 3 and 4 show two 

simulation runs, with each F-Robots’ trace represented by a different colour, and each 

fixed enemy robot shown by an “X”. 

Table 3: Results for Robot Affective Subsystem  

Range Avg Distance 

between F-Robots 

Std Deviation Average Distance of F-

Robots from Enemy 

Std Deviation 

0 7.6 0.5 30.4 0.3 

10 13.1 0.5 25.2 0.4 

 

It was also found that the WEAPON firing rate had a very strong tendency to be 

higher as enemies were closer. Robot 1’s tempo value when it is within range of an 

enemy and firing is shown in Figure 5. The x-axis is the distance from the closest 

enemy, and the y-axis is tempo. It can be seen that the maximum tempo (just under 

maximum tempo 1) or firing rate is achieved when the distance is at its minimum. 

Similarly the minimum firing rate occurs at distance 10 in most cases. In fact the 

correlation between the two is -0.98 which is very high. This shows that PMP allows 

the same flexibility as fuzzy logic, in that the gun rate is controlled fuzzily from 

minimum to maximum. The line is not straight and uniform because it is possible for 

robot 1 to be affected by its distance from other enemies and from other friendly 

robots. 

Finally it is worth considering what these robots actually sound like as they move 

and change status. To allow this each of the 4 robots was assigned a distinctive motif, 

with constant tempo. Motives designed to identify a module, agent, etc. will be called 

“Identive”. The identives for the 4 robots were: 

 

1. [1,2,3,5,3,1] = C,D,Eb,F,Eb,D,C 

2.  [3,5,8,10,8,5,3] = Eb,F,G,Ab,G,F,Eb 

3.  [8,10,12,1,12,10,8] = G,Ab,Bb,C,Bb,Ab,G 

4.  [10,12,1,5,1,12,10] = Ab,Bb,C,G,C,Bb,Ab 



Fig. 3: Simulation of Military Robots without Pulsed Melodic Processing 
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Fig. 4: Simulation of Military Robots with PMP system and Range of 10 units 
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Figure 6 shows the first 500 notes of robots 1 to 3 in the simulation in piano roll 

notation. The octave separation used for the Figure 6 also helped with aural 

perception. (So this points towards octave independence in processing as being a 

useful feature.) It was found that more than 3 robots were not really perceivable. It 

was also found that transforming the tempo minimums and maximums to between 

100 and 200 beats per minute and quantizing by 0.25 beats seemed to make seem to 

make changes more perceivable as well.  

 
Fig. 5: Plot of distance of R1 from enemy when firing + weapon tempo value 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: A plot of 500 notes in the “motor” processing of robots 1 to 3 (octave separated). 
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An extension of this system is to incorporate rhythmic biosignals from modern 

military suits (Stanford 2004)(Kotchetkov et al. 2010). For example if “BioSignal” is 

a tune generating module whose tempo is a heart rate reading from a military body 

suit, and whose key mode is based on EEG valence readings, then the MOTOR 

system becomes: 

 

MOTOR = WEAPON MOR MNOT(DetectOther) MOR MNOT(BioSignal) (6) 

 

The music table for (6) would show that if a (human) friend is detected whose 

biosignal indicates positive valence, then the F-robot will move away from the friend 

to patrol a different area. If the friendly human’s biosignal is negative then the robot 

will move towards them to aid them. 

 

4  Musical Neural Network Example 
 

We will now look at a form of learning artificial neural network which uses PMP. 

These artificial networks take as input, and use as their processing data, pulsed 

melodies. A musical neuron (muron – pronounced MEW-RON) is shown in Figure 7. 

The muron in this example has two inputs, though it can have more than this. Each 

input is a PMP melody, and the output is a PMP melody. The weights on the input w1 

and w2 are two element vectors which define a key mode transposition, and a tempo 

change. A positive Rk will make the input tune more major, and a negative one will 

make it more minor. Similarly a positive Dt will increase the tempo of the tune, and a 

negative Dt will reduce the tempo. The muron combines input tunes by superposing 

the spikes in time – i.e. overlaying them. Any notes which occur at the same time are 

combined into a single note with the highest pitch being retained. This retaining rule 

is fairly arbitrary but some form of non-random decision should be made in this 

scenario (future work will examine if the “high retain” rule adds any significant bias). 

Murons can be combined into networks, called musical neural networks, abbreviated 

to “MNN”. The learning of a muron involves setting the weights to give the desired 

output tunes for the given input tunes. Applications for which PMP is most efficiently 

used are those that naturally utilize temporal or affective data (or for which internal or 

external sonification is particularly important). 

 

Figure 7: A Muron with two inputs. 

 

 

 

 

 

 

 One such system will now be proposed for the estimation of affective content of 

real-time typing. The system is inspired by research by the authors on analysing 

w1 = [R1, D1] 

w2 = [R2, D2] 

 

Output 



QWERTY keyboard typing, in a similar way that piano keyboard playing is analyzed 

to estimate the emotional communication of the piano player (Kirke et al. 2011). In 

this a real-time system was developed to analyse tempo of typing and estimate 

affective state. The MNN/PMP version demonstrated in this chapter is not real-time, 

and does not take into account base typing speed. This is to simplify simulation and 

experiments here. The proposed architecture for offline text emotion estimation is 

shown in Figure 8. It has 2 layers known as the Input and Output layers. The input 

layer has four murons – which generate notes. Every time a Space character is 

detected, then a note is output by the Space Flag. If a comma is detected then a note is 

output by the comma flag, if a full stop/period then the Period Flag generates a note, 

and if an end of paragraph is detected then a note is output by the Paragraph flag. The 

idea of these 4 inputs is they represent 4 levels of the timing hierarchy in language. 

The lowest level is letters, whose rate is not measured in the demo, because offline 

pre-typed data is used. These letters make up words (which are usually separated by a 

space). The words make phrases (which are often separated by commas). Phrases 

make up sentences (separated by full stops), and sentences make up paragraphs 

(separated by a paragraph end). So the tempo of the tunes output from these four 

murons represent the relative word-rate, phrase-rate, sentence-rate and paragraph rate 

of the typist. (Note that for data from a messenger application, the paragraph rate will 

represent the rate at which messages are sent). It has been found by researchers that 

the mood a musical performer is trying to communicate effects not only their basic 

playing rate, but also the structure of the musical timing hierarchy of their 

performance (Kirke et al. 2011). Similarly we propose that a person’s mood will 

affect not only their typing rate (Kirke et al. 2011), but also their relative word rate 

and paragraph rate, and so forth.  

The input identives are built from a series of simple rising semitone melodies. The 

desired output of the MNN will be a tune which represents the affective estimate of 

the text content. A happy tune means the text structure is happy, sad means the text is 

sad. Normally Neural Networks are trained using a number of methods, most 

commonly some variation of gradient descent. A gradient descent algorithm will be 

used here. w1, w2, w3, w4 are all initialised to [0,1] = [Key mode sub-weight, Tempo 

sub-weight]. So initially the weights have no effect on the key mode, and multiply 

tempo by 1 – i.e. no effect. The final learned weights are also shown in Figure 8. 

Note, in this simulation actual tunes are used (rather than PMP-value parameterization 

used in the robot simulation). In fact the Matlab MIDI toolbox is used. The 

documents in the training set were selected from the internet and were posted personal 

or news stories which were clearly summarised as sad or happy stories. 15 sad and 15 

happy stories were sampled. The happy and sad tunes are defined respectively as the 

targets: a tempo of 90 BPM and a major key mode, and a tempo of 30 BPM and a 

minor key mode. 

At each step the learning algorithm selects a training document. Then it selects one 

of w1, w2, w3, or w4. Then the algorithm selects either the key mode or the tempo 

sub-weight. It then performs a single one-step gradient descent based on whether the 

document is defined as Happy or Sad (and thus whether the required output tune is 

meant to be Happy or Sad). The size of the one step is defined by a learning rate, 

separately for tempo and for key mode. Before training, the initial average error rate 

across the 30 documents was calculated. The key mode was measured using a 



modified key finding algorithm (Krumhansl and Kessler 1982) which gave a value of 

3 for maximally major and -3 for maximally minor. The tempo was measured in Beats 

per minute. The initial average error was 3.4 for key mode, and 30 for tempo.  

 
Fig. 8: MNN for Offline Text Affective Analysis 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

After the 1920 iterations of learning the average errors reduced to 1.2 for key 

mode, and 14.1 for tempo. These results are described more specifically in Table 4 

split by valence - happy or sad. Note that these are in-sample errors for a small 

population of 30 documents. However what is interesting is that there is clearly a 

significant error reduction due to gradient descent. This shows that it is possible to fit 

the parameters of a musical combination unit (a muron) so as to combine musical 

inputs and give an affectively representative musical output, and address a non-

musical problem. (Though this system could be embedded as music into messenger 

software to give the user affective indications through sound). It can be seen in Table 

4 that the mean tempo error for Happy documents (target 90 BPM) is 28.2 BPM. This 

is due to an issue similar to linear non-separability in normal artificial neural networks 

(Haykin 1994). The Muron is approximately adding tempos linearly. So when it tries 

to approximate two tempos then it focuses on one more than the other – in this case 

the Sad tempo. Hence adding a hidden layer of murons may well help to reduce the 

Happy error significantly (though requiring some form of melodic Back Propagation). 

 

Table 4: Mean Error of MNN after 1920 iterations of gradient descent  

 Key 

Target 

Mean Key 

Error  

Tempo Target 

(BPM) 

Mean Tempo Error 

(BPM) 

Happy Docs 3 0.8  90 28.2 

Sad Docs -3 1.6 30 0 

w3 = [1, 1.4] 

w1 = [0, 1.4] 

w2 = [2, 1.8] 

w4 = [1, 0.5] PARAGRAPH 

Flag 

FULL STOP 

(PERIOD)  Flag 

COMMA Flag 

SPACE Flag 



 

5  Affective Market Mapping 
 

The Affective Market Mapping (AMM) involves mapping stock movements onto a 

PMP representation. One mapping that was initially considered was a risk / return 

mapping – letting risk be mapped onto arousal / tempo, and return be mapped onto 

valence / key mode. However this does not give an intuitively helpful result. For 

example it implies that a high arousal high valence stock (high risk / high return) is 

“happy”. However, this entirely depends on the risk profile of the investor / trader. So 

a more flexible approach – and one that is simpler to implement - for the AMM is: 

 

1. Key mode is proportional to Market Imbalance. 

2. Tempo is proportional to Number of Trades per Second. 

 

These can refer to a single stock, a group of stocks, or a whole index. Consider a 

single stock S. The Market Imbalance Z in a time period dT is the total number of 

shares of buying interest in the market during dT minus the total number of shares of 

selling interest during dT. This information is not publically available, but can be 

approximated. For example it can be calculated as in (Kissell and Glantz 2003) - the 

total number of buy-initiated sales minus the total number of sell-initiated trades 

(normalized by the Average Daily Volume for S); with a trade is defined as buy 

initiated if it happens on an uptick in the market price of stock S, and sell-initiated if it 

happens on a downtick. If there are as many buyers as sellers in stock S then it is 

balanced and its market imbalance Z will be 0. If there are a large number of buyers 

and not enough sellers (e.g. in the case where positive news has been released about 

the stock) the imbalance will become positive.  

To generate a melody from a stock, simply have a default stream of non-key notes 

at a constant or uniformly random rate; and every time there is a trade add a major 

key note for a buy initiated trade and a minor key note for a sell initiated trade. So for 

example, if a stock is being sold off rapidly due to bad news, it will have a negative 

market imbalance and a high trading rate – which will be represented in PMP as a 

minor key and high tempo – previously labelled as “angry”. Stocks trading up rapidly 

on good news will be “happy”, stocks trading up slowly in a generally positive market 

will be “relaxed”. The resulting PMP stream matches what many would consider their 

affective view of the stock.  

For algorithmic trading, affective strategies can be investigated. An example might 

be “affective arbitrage”. In this case the affective content of current news stories 

about a company could be automatically ascertained by text scanning algorithms 

(either using an MNN of the type in the previous section, or by keyword analysis that 

utilizes the various word-affective databases available). These could be compared to 

the affective state of the company’s stocks, bonds etc. If there is a sufficient disparity, 

then an opportunity may exist for arbitrage. Suppose we define a measure of PMP 

called the “Positivity”: 

 

     positivity(X) = keyValue(X) + tempoValue(X)    (7) 

 



Then happy stocks would have a higher positivity than sad ones, and relaxed would 

have a slightly lower positivity than happy ones. An algorithmic trading rule could be: 

 

If positivity(newsStoriesAboutX MXOR stockX) > k Then Flag(stockX) (8) 

 

The MXOR function will give a low key/tempo (valence/arousal) output for 

valence and arousal as long as the news story and the stock’s affectivity are similar 

enough. However if the news story becomes very emotionally positive while the stock 

is more negative, or vice versa, then the MXOR value will begin to increase. Data 

mining for “affective arbitrage” opportunities could be done by investigating various 

functions of stocks and seeing if they allow profits; for example rules such as: 

 

positivity(Stock1 MAND stock2) > x 

positivity(Stock1 MXOR Market) > y 

positivity(Stock1) + postivity MNOT(Market) < z 

 

could be investigated. Trader “feeling” about the market sentiment could also be 

incorporated. “I’ve got a good feeling”, “Slow market”, etc. 

Emotions are considered to be particularly relevant in the field of behavioural 

finance (Subrahmanyam 2008). In behavioural finance a client’s emotional reaction to 

stock movements may be different to the actual rational implications of the stock 

movements. Hence an investment professional needs to optimize a client’s affective 

reactions as well as their portfolio. Figure 9 shows a possible approach to learning a 

client’s behaviour biases for investing using PMP. In the past a client may have said 

they are happy to invest in stocks S1 to Sn. However in reality they may show 

different affective responses to the movements of these stocks over the time they are 

held. The MNN in Figure 9 is trained based on past client reactions. For example if 

they were happy about the performance of MSFT (Microsoft) which is part of the tech 

sector in the S&P 500 market, then that can be used as training date for the MNN. 

This can then be applied for all stocks the client has reported particular positive or 

negative reactions to. Any stocks they do not report on could be assumed to have a 

“relaxed” affect for the client. As data is collected it will gradually become clear to 

the MNN how the client will react. Then when the portfolio is rebalanced, any stocks 

which cause an excessive negative reaction can be optimized out. 

The “Client Claim” input is based on any questionnaire a client was given when 

having over management of their portfolio to the investment professional. For 

example a new client may claim they “like” tech stocks, and dislike utility “stocks”. 

Note – that it would probably be necessary to add a hidden layer to the MNN to 

achieve useful results. 

The affective state of a portfolio is calculated as the average PMP values across all 

stocks in the portfolio. So a portfolio full of frequently trading stocks will have a 

higher tempo. A portfolio where stocks are being sold off will tend to have a minor 

key / low valence. 

As well as considering the affectivity of a stock or a market, we can consider the 

affectivity of a trading strategy. A “happy” strategy is buying fast, an “angry” strategy 

is selling fast. For example, consider investment implementations: the Market Impact 

(Kissell and Glantz 2003) of a stock trade can be viewed as a form of affective 



influence – moving the key/valence of the stock’s market towards that of the trader 

and thus incurring a cost. So minimizing market impact involves minimizing the 

effect of the trader’s key/valence on the market’s key/valence. Minimizing trading 

risk involves maximising tempo/arousal so the market does not have time to move 

against you. So minimizing these sorts of trading costs for a single stock involves 

maximizing tempo in your trading, while keeping the key/valence-influence minimal.  

 

 
Fig. 9: MNN for Offline Learning Client Preferences 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

As well as the processing potential of PMP in the markets, it is interesting to note 

that the melodies provide a natural sonification of stock movements and processing – 

a useful factor for traders whose eyes are already too busy. One can also consider the 

harmonic relationship between two stocks, or between a stock and the market. If they 

start to create dissonance where once was consonance (e.g. one becomes more major 

as the other stays minor) then this indicates a divergence in any correlated behaviour. 

So there are four elements which suggest PMP may have potential in the stock 

markets: the simple Market Mapping, the incorporation of trader, client and news 

article “feelings” into what is an art as well as a science, a unified framework for 

affectivity across short and long-term investments and trading implementation, and a 

natural sonification for eyes-free HCI in busy environments. 

 

6  Conclusions 
 

This chapter has introduced the concept of pulsed melodic processing, a 

complementary approach in which computational efficiency and power are more 

balanced with understandability to humans (HCI); and which can naturally address 
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rhythmic and affective processing. As examples music gates and murons have been 

introduced; as well as potential applications for this technology in robotics, real-time 

text analysis and financial markets. This chapter is by necessity a summary of the 

research done, leaving out much of the detail and other application ideas; these 

include the use of biosignals, sonification experiments, ideas for implementing PMP 

in a high level language, programming by music, etc. However it demonstrates that 

music can be used to process affective functions either in a fixed way or via learning 

algorithms. The tasks are not the most efficient or accurate solutions, but have been a 

proof of concept of a sound-based unified approach addressing HCI and processing. 

There are a significant number of issues to be further addressed with PMP, a key 

one being is the rebalance between efficiency and understanding useful and practical, 

and also just how practical is sonification - can sonification more advanced than 

Geiger counters, heart rate monitors, etc. really be useful and adopted? The 

valence/arousal coding provides simplicity, but is it sufficiently expressive while 

remaining simple? Similarly it needs to be considered if a different representation 

than tempo/key mode be better for processing or transparency. PMP also has a close 

relationship to Fuzzy Logic and Spiking Neural Networks – so perhaps it can adapted 

based on lessons learned in these disciplines. And finally, most low level processing 

is done in hardware – so issues of how PMP hardware is built need to be investigated. 

 

References 
Banik, S., Watanabe, K., Habib, M., Izumi, K.: Affection Based Multi-robot Team Work, In 

Lecture Notes in Electrical Engineering, pp. 355--375 (2008). 

Bresin, R., Friberg, A.: Emotional Coloring of Computer-Controlled Music Performances, 

Computer Music Journal, Vol. 24, No. 4, pp. 44--63 (2002). 

Cohen, J.: Monitoring Background Activities, In Auditory Display: Sonification, Audification, 

and Auditory Interfaces, pp. 499--531 (1994). 

Cooke, D.: The Language of Music. Oxford University Press (1959). 

Cosmides, L., Tooby, J.: Evolutionary Psychology and the Emotions, In Handbook of 

Emotions, pp. 91--115 (2000). 

Haykin, S.: Neural Networks: A Comprehensive Foundation, Prentice Hall (1994). 

Indiveri, G.;   Chicca, E.;   Douglas, R.: A VLSI array of low-power spiking neurons and 

bistable synapses with spike-timing dependent plasticity, IEEE Transactions on Neural 

Networks, Vol. 17, No. 1, pp. 211--221 (2006). 

Juslin, P.: From Mimesis to Catharsis: expression, perception and induction of emotion in 

music, In Music Communication, pp. 85--116, Oxford University Press (2005). 

Kirke, A., Miranda, E.: A Survey of Computer Systems for Expressive Music Performance, 

ACM Surveys, Vol. 42, No. 1, pp. 1--41 (2009). 

Kirke, A., Bonnot, M., Miranda, E.: Towards using expressive performance algorithms for 

typist emotion detection, In Proceedings of 2011 International Computer Music Conference 

(ICMC 2011), International Computer Music Association (2011). 

Kirke, A., Miranda, E.: Emergent construction of melodic pitch and hierarchy through agents 

communicating emotion without melodic intelligence, In Proceedings of 2011 International 

Computer Music Conference (ICMC 2011), International Computer Music Association (2011).  

Kissell, R., Glantz, M.,: Optimal Trading Strategies, Amacom (2003). 

Kotchetkov, I., Hwang, B., Appelboom, G., Kellner, C., Sander Connolly, E.: Brain-computer 

Interfaces: Military, Neurosurgical, and Ethical Perspective, Neurosurgical Focus, Vol. 28, No. 

5 (2010). 



Krumhansl, C., Kessler, E.: Tracing the dynamic changes in perceived tonal organization in a 

spatial representation of musical keys, Psychological Review, Vol. 89, No. 4, pp. 334--368 

(1982). 

Livingstone, S.R., Muhlberger, R., Brown, A.R., Loch, A.: Controlling Musical Emotionality: 

An Affective Computational Architecture for Influencing Musical Emotions. Digital Creativity, 

Vol. 18, No. 1, pp. 43--53  (2007). 

Malatesa, L., Karpouzis, K., Raouzaiou, A.: Affective intelligence: the human face of AI, In 

Artificial intelligence, Springer-Verlag (2009). 

Marinos, P.: Fuzzy Logic and Its Application to Switching Systems, IEEE transactions on 

computers C, Vol. 18, No. 4, pp. 343--348 (1969). 

Picard, R.: Affective Computing: Challenges, International Journal of Human-Computer 

Studies, Vol. 59, No. 1-2, pp. 55--64 (2003). 

Stanford, V.: Biosignals Offer Potential for Direct Interfaces and Health Monitoring, Pervasive 

Computing, Vol. 3, No. 1, pp. 99-103 (2004). 

Subrahmanyam, A.: Behavioural Finance: A Review and Synthesis, European Financial 

Management, Vol. 14, No. 1, pp. 12--29 (2008). 

Vickers, P., Alty, J.: Siren songs and swan songs debugging with music. Communications of 

the ACM, Vol. 46, No. 7, pp. 87--92 (2003). 

 


