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This paper reports the first results of an innovative approach to modelling music

cognition based on the emergent behaviour of interacting autonomous systems.

A group of interactive autonomous singing robots were programmed to develop a

shared repertoire of songs from scratch, after a period of spontaneous creations,

adjustments and memory reinforcements. The robots interact with each other by

means of vocal-like sounds. They use real sounds as opposed to software

simulation. They are furnished with a physical model of the vocal tract, which

synthesises vocal singing-like intonations, and a listening mechanism, which

extracts pitch sequences from audio signals. The robots learn to imitate each

other by babbling heard intonation patterns in order to evolve vectors of motor

control parameters to synthesise the imitations. Models of the basic mechanisms

underlying the emergence of songs are of great interest for musicians looking for

hitherto unexplored ways to create music with interactive machines.

Keywords: experimental AI modelling; emergent communication systems;

interactive intelligent systems; learning by imitation; autonomous robots;

artificial intelligence and music

1. Introduction

In this paper we introduce an experimental AI system whereby a group of interactive
robots programmed with appropriate motor (vocal), auditory and cognitive skills can
develop a shared repertoire of short songs from scratch, after a period of spontaneous
creations, adjustments and memory reinforcements. The robots develop vectors of motor
control parameters to produce imitations of heard songs.

Why is it useful to model the emergence of repertoires of songs with a robotic model?
A better understanding of basic mechanisms underlying the emergence of song patterns in
an artificial system is of great interest for musicians looking for hitherto unexplored
ways to create music with interactive intelligent machines. Broadly speaking, current AI
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techniques for implementing generative music systems can be classified as ‘abstract
algorithmic’ or ‘music knowledge-based’. Abstract algorithmic techniques are suitable for
generating music from the behaviour of algorithms that were not necessarily designed
for music in the first instance, but embody pattern generation features that are suitable
for producing musical materials. Such algorithms include Cellular Automata (Hunt, Orton
and Kirk 1991, Miranda 1993) and Particle Swarms (Blackwell and Bentley 2002) to cite
but two examples. Music knowledge-based techniques generate music using algorithms
derived from or inspired by well-established music theory. Most of these systems can learn
compositional procedures from given examples, adopting either a symbolic machine
learning approach (Steedman 1984, Cope 1996, Papadopoulos and Wiggins 1998) or
a connectionist (neural networks) approach (Todd and Loy 1991, Mozer 1994), depending
on the way they store information about music. Hybrid systems also exist (Burton and
Vladimirova 1997).

Both classes of techniques have their merits and pitfalls. Abstract algorithmic
techniques tend to produce rather complex music, most of which may sound too remote
from what the majority of people, including expert listeners, would consider musical.
This is possibly so because abstract algorithmic music tends to lack the cultural references
that people normally rely upon when listening to music. Conversely, knowledge-based
techniques tend to produce pastiches of existing musical pieces, which often are of little
interest for composers aiming to create new music; that is, music that is not based on
mimicking existing pieces or well-known musical styles. The goal of our research is to
bring the merits of both approaches closer to each other. Music consists of units organised
in specific ways and it is culturally transmitted. Models of the mechanisms underlying
the dynamics of such organisation and cultural transmission are bound to provide new
insights into building interactive intelligent music systems.

2. The model

The robots in a group are expected to form a common repertoire of songs: a robot must
develop a repertoire that is similar to the repertoires of its peers. Metaphorically speaking
we could say that the songs create some form of ‘social identity’ for the robots, which
can be assessed in terms of the similarity of their repertoires.

The importance of imitation for the acquisition of behaviour has gained much
attention after the discovery of mirror neurons in the frontal lobes of macaque monkeys.
Mirror neurons are neurons which fire both when an animal performs an action and when
the animal observes the same action performed by another animal, especially of the same
species. Thus, the neurons mirror the behaviour of another animal, as though the
observers were themselves performing the action. These neurons have subsequently
been observed in some birds, and in other primates including humans (Rizzolatti and
Craighero 2004).

2.1 The architecture

The robots (Figure 1) are equipped with a voice synthesiser, a hearing apparatus and
a memory device.
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The voice synthesiser is implemented as a physical model of the vocal tract, which is
able synthesise formants and a number of vocal-like sounds. The robots need to compute
three vectors of parameters for the synthesiser in order to produce vocal-like intonations:
(a) lung pressure, (b) the width of the glottis, and (c) the length and tension of the
vocal chords, represented as lung_pressure(n), interarytenoid(n) and cricothyroid(n),
respectively (Boersma 1993, Miranda 2002). As for the hearing apparatus, it employs
short-term autocorrelation-based analysis to extract the pitch contour of a vocal sound
(Miranda 2001). The algorithm features a parameter that defines the sensitivity of the
auditory perception of the robots. In essence, this parameter regulates the resolution of
the hearing apparatus by controlling the precision of the short-term autocorrelation
analysis. For the sake of consistency, from now on the term ‘intonation’ will be used
instead ‘song’.

Essentially, the memory of a robot stores its repertoire of intonations, but it also stores
other information such as probabilities, thresholds and reinforcement parameters.
(These variables will be clarified when the algorithms are introduced below. See also the
Appendix.) The robots have two distinct modules to store intonations in their memories:
a motor map and a perceptual map. The motor map stores information in terms of three
vectors of motor (vocal) parameters and the perceptual map stores information in terms of
pitch contour, which is represented using a representation scheme of our own design:
CARMEC (Common Abstract Representation of Melodic Contour). CARMEC
represents a perceptual map as a graph whose vertices stand for initial (or relative)
pitch points and pitch movements, and the edges represent a directional path. Whilst the
first vertex must have one outbound edge, the last one must have only one incoming edge.

Figure 1. The model uses commercially available robots, which were adapted at ICCMR for

high-quality voice synthesis and analysis with sampling rate at 22 050Hz.
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All vertices in between must have one incoming and one outbound edge each. Vertices can

be of two types, initial pitch points (referred to as p-ini) and pitch movements (referred to

as p-mov) as follows (Figure 2):

p-ini¼ {SH, SM, SL}
p-mov¼ {VLSU, LSU, MSU, SSU, RSB, SSD, MSD, LSD, VLSD}

where:

SH¼ start intonation in the higher register
SM¼ start intonation in the middle register
SL¼ start intonation in the lower register

and

VLSU¼ very large step up
LSU¼ large step up

Figure 2. (a) The representation of an intonation, where t(n) indicates an ordered sequence of

n pitches. (b) The cricothyroid vector of the motor control map that produced this intonation.
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MSU¼medium step up
SSU¼ small step up
RSB¼ remain at the same band
SSD¼ small step down
MSD¼medium step down
LSD¼ large step down

VLSD¼ very large step down

An intonation will invariably start with a p-ini, followed by one or more p-movs. It is
assumed that an intonation can start at three different voice registers: low (SL), middle
(SM) and high (SH). Then, from this initial point {t(n), n¼ 0} the next pitch at t(nþ 1)
might jump, or step up or down, and so forth.

It is important to note that pitch frequency values or labels for musical notes are not
relevant here because the objective is to represent abstract melodic contours rather than
a sequence of pitches (or musical notes) drawn from a specific tuning system. This is very
important because one should not assume that the robots must sing in any pre-established
musical scale. Rather, they should be given the ability to establish their own tuning system
collectively.

2.2 The interactions

The interaction algorithms were largely inspired by the work of Steels (1997) on
‘evolutionary’ language games. A similar interaction dynamics has been proposed by de
Boer (2001) to implement a model for the development of vowel systems.

All robots have identical synthesis and listening apparatus. At each round, each of the
robots in a pair plays one of two different roles: the robot-player and the robot-imitator.

The main algorithms are given in detail in the Appendix. Glimpses at the functioning
of these algorithms are given in Figures 3, 4 and 5. For didactic purposes, the co-ordinates
of these figures do not correspond to the actual parameters of the model. For the
sake of clarity, the plotting is in an idealised two-dimensional representation of the motor
and perceptual repertoires. The numbers in the figures indicate actions corresponding to
the line numbers of the algorithms in the Appendix. The robots do not sing all at the same
time; they interact in pairs.

The robot-player starts the interaction by producing an intonation �, randomly
chosen from its repertoire. The robot-imitator then analyses the intonation �, searches
for a similar intonation � in its repertoire and produces it. Figure 3 shows an
example where the robot-player and the robot-imitator hold in their memories two
intonations each. The robot-player picks the intonation � from its motor-repertoire
and produces it (1). (Note: the numbers in parenthesis correspond to actions
represented by dotted arrows in Figures 3, 4 and 5.) The robot-imitator hears the
intonation � and builds a perceptual representation � of it (4). Then it picks from its
own perceptual repertoire the intonation � that is most perceptually similar to the
heard intonation � (5) and produces it as an imitation (6). Next, the robot-player
hears the imitation � and builds a perceptual representation c of it (9). Then it picks
from its own perceptual repertoire the intonation � that is most perceptually similar to
the imitation c (10).

If the robot-player finds another intonation � that is closer to � than � is, then the
imitation is seen as unsatisfactory, otherwise it is satisfactory. In Figure 3, the robot-player
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babbles the original intonation � to itself (11) and concludes that � and � are different (12).
Then, it sends a negative feedback to the robot-imitator (17). When an imitation is
unsatisfactory the robot-imitator has to choose between two potential courses of action.
If it finds out that � is a weak intonation in its memory (because it has not received
enough reinforcement in the past) then it will move it away slightly from � (by means of
a deviation coefficient), as a measure to avoid repeating this mistake again. But if � is
a strong intonation (due to a good past success rate), then the robot will leave �
untouched (because it has been successfully used in previous imitations and a few other
robots in the community also probably consider this intonation as being strong) and
will create a new intonation � similar to � to include it in its repertoire; that is, the robot
produces a number of random intonations to itself (alike ‘babbling’) and then it picks
the one that is perceptually most similar to �. Let us assume that in Figure 3 the
intonation � has a good past success rate. In this case, the robot-imitator leaves it
untouched and creates a new intonation � to include in its repertoire (25, 26).

Figure 4 shows what would have happened if the intonation � did not have a good
past success rate: in this case the robot-imitator would have moved � away from � slightly
(29 and 30). Finally, Figure 5 shows what would have happened if the robot-player had
concluded that � and � were the same, meaning that the imitation was successful. In this
case, the robot-imitator would have reinforced the existence of the intonation � in its

Figure 3. Example of an unsuccessful imitation.
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memory and would have moved it slightly towards the representation of the heard
intonation �.

Before terminating the round, both robots perform final updates. First, they scan their
repertoire and merge those intonations that are considered to be perceptibly close to each
other; the merge function removes two intonations and creates a new one by averaging
their values. Also, at the end of each round, both robots have a certain probability Pb of
undertaking a spring-cleaning to get rid of weak intonations; those intonations that
have not been sufficiently reinforced are forgotten. Finally, at the end of each round, the
robot-imitator has a certain probability Pa of adding a new randomly created intonation
to its repertoire; we refer to this coefficient as the ‘creativity coefficient’.

The signal feedback is implemented as follows: if feedback is positive, then the robot
makes a couple up-and-down movements of its head. If negative, then it makes a couple
of left-to-right movement of its head.

3. The behaviour of the model

Although we can run the model in simulation mode with software agents, with the
exception of the last example in Section 3.4, all examples discussed below are from robotic

Figure 4. An example where the unsuccessful imitation involved an intonation that has a poor past

success rate.

Figure 5. An example of a successful imitation.
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interactions with real sounds. However, due to limited resources, we have used only two
robots, which provided embodiment to pairs of software agents. The agents were
transmitted wireless to the robots from a computer and vice-versa. We also included
a band-pass filter in the listening system tuned to the range of frequencies of the sounds
they can possibly sing; this is to avoid the interference of the noise generated by the motor
that moves the robot’s mouth.

Figure 6 plots an example of an intonation with three elements in the sequence and
its respective pitch analysis and CARMEC representation. The oscillations of the line
representing pitch in Figure 6b are due to the vibrato nature of the singing voice, which
in this case is a modulation of approximately 5Hz.

3.1 Average size of the evolved repertoire

The graph in Figure 7 shows a typical example of the development of the average
repertoire of a group of five robots, with snapshots taken after every 100 interactions over
a total of 5000 interactions. The robots developed repertoires averaging 19 intonations
each. (Note that some may have developed more or less than 12 intonations.) After a
steady steep increase of the repertoire until about 2000 interactions, the robots settled to
an average of 17 intonations each until about 2400 interactions. Then they increased the
repertoire to an average of 18 intonations until about 4000 interactions. From 4000
interactions onwards the robots finally settled to an average of 19 intonations.

The pressure to increase the repertoire is mostly due to the probability Pa of creating
a new random intonation, combined with the rate of new inclusions due to unsatisfactory
imitations. The effect of running the simulation with a larger group and for longer is
shown in Section 3.4.

Figure 8 portrays the perceptual memory of a robot randomly selected from the
group after 5000 interactions. In this case, the length of the intonations varied from
three to six pitches. (The minimum and maximum length of the intonation to be evolved
is fixed beforehand.) This robot evolved 11 intonations; one below the average of
the group.

3.2 Rate of successful imitations

The graph in Figure 9 plots the imitation success rate of the community, measured at every
100 interactions. Note the decrease of imitation success rate during those phases when the
robots were increasing the size of their repertoires. Although the repertoire size tends to
increase with time, the success rate tends to stay consistently high. However, this is highly
dependent upon the number of robots in the group: the higher the number of robots, the
deeper the fall of the success rate and the longer it takes to regain the 100% success rate
stability.

3.3 Perceptual vs. motor maps

An interesting feature of this model is that the robots do not necessarily have to evolve the
same motor representations for what is considered to be perceptibly identical. Figure 10
shows the motor functions (Figures 10b, 10c and 10d) evolved by three different robots
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(Robot 1, Robot 2 and Robot 3) to represent what is essentially the same intonation
(Figure 10a).

The imitation of an intonation pattern requires the activation of the right motor
parameters in order to reproduce it. The robot-imitators assume that they always can
recognise everything they hear because in order to produce an imitation a robot will use
the motor vectors that best match its perception of the intonation in question. It is the
robot-player who will assess the imitation.

Figure 6. An example of an intonation produced by a robot. (a) Plotting of the intonation. (b) The

pitch analysis of the intonation. (c) The CARMEC representation: the intonation starts at the higher

register (SH), then it remains within the same frequency range (RSB), and finally it steps down

slightly (SSD). For the sake of clarity, the background metrics and labels of the graph in 6(c) are not

shown. Please refer to Section 2.1, Figure 2 for an explanation of the perceptual representation.
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3.4 Effect of scaling up

The graph in Figure 11 shows an example of the development of the average repertoire of

a group of 20 robots, with snapshots taken every 100 interactions over a total of 40 000

interactions. In this case the group developed an average repertoire of just over 21

intonations.
This example demonstrates the fact that, given the appropriate simulation settings, the

size of the repertoire of intonations tends to stabilise with time. This happens because the

Figure 7. The evolution of the average sise of the repertoire of intonations of the whole group of

robots. In this case the group developed an average repertoire of 19 intonations. (The time axis is

in terms number of interactions multiplied by 100.)

Figure 6. Continued.
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more the robots use strongly settled intonations, the more these intonations are reinforced
in their repertoires, and therefore the more difficult for new intonations to settle in. But
these repertoires are dynamic in the sense that these strongly settled intonations do not
remain static. The robots are constantly making small adjustments to their representations.

Figure 9. The imitation success rate over time. (The time axis is in terms of number of interactions

multiplied by 100.)

Figure 8. The perceptual memory of one robot. For the sake of clarity, the background metrics

and labels of the perceptual representation are not shown. Please refer to Section 2.1, Figure 2 for

an explanation of the perceptual representation.
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SH

SM

SL

VLSU

LSU

MSU

SSU

RSB

SSD

MSD

LSD

SVLSD

t (0) t (1) t (2)

(a)

(b)

(c)

(d)

Figure 10. (a) An example of a perceptual pattern lasting for three pitches and its corresponding

motor control vectors developed by three different robots: (b) the lung_pressure vector, (c) the

cricothyroid and (d) the interarytenoid vector.
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The scaling up was studied by means of a simulation using software agents rather than
robots. Considering that each robotic interaction takes an average of 30 seconds for
intonations ranging from three to six pitches, a run with 40 000 interactions would take
approximately 2 weeks to complete. Software simulation is desirable in such circumstances
to fine-tune the model prior to running the robotic simulation.

4. Conclusion and further work

At the core of our the system introduced in this paper is a selective mechanism inspired by
Neo-Darwinian evolutionary theory (Fisher 1930, Haldane 1932, Huxley 1942), whereby
some form of ‘mutation’ takes place (e.g. intonations move closer to or away from other
intonations in memory) and patterns are ‘born’ (e.g. with random additions through
the ‘creativity coefficient’) and ‘die’ (e.g. the spring-cleaning mechanism).

At the introduction we suggested that models such as the one presented in this
paper have the potential to shed new insights into building interactive music systems.
What sort of systems can be built informed by such models?

We are aiming at the development of technology for implementing intelligent systems
that can improvise music in real-time with human musicians. However, instead of
manually programming these machines with prescribed rules for generating music, we
aim at programming them with the ability of developing these rules autonomously,
dynamically and interactively. This paper demonstrated one of the various intertwined
algorithms that may lead to such capability.

In order to reduce ambient noise interference, we ran the experiments in a quiet room.
However, this constraint will be lifted in further experiments in order to allow for
simulations where ambient noise will be taken into account, including interaction with
humans singing and/or playing musical instruments. However, before we let the robots

Figure 11. The evolution of the sise of the repertoire of intonation of a group of 20 robots during

40 000 interactions. In this case the group developed an average repertoire of just over 21

intonations. (The time axis is in terms of interactions multiplied by 1000.)
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interact with humans there are a number of issues to be addressed in order to increase
the sophistication of the model.

A limiting aspect of the present system is that the robots only deal with short pitch
sequences. The natural progression in this research is to furnish the robots with the ability
to deal with longer pitch sequences, rhythm and other musical attributes.

Although the symbolic sensory-motor-like memory mechanism developed for storing
intonations served the present model well, it is not efficient for storing longer pitch
sequences, let alone other musical attributes. In order to increase the complexity of the
model, it is necessary to improve the memory mechanism, which would probably be more
efficient by storing information about generating the sequences rather than the sequences
themselves. We are looking into the possibility of doing this by means of algorithms
for the evolution of grammars (Miranda et al. 2003) and neural networks that mimic the
behaviour of mirror neurons (Westerman and Miranda 2003).

Also, we are currently considering ways in which to embed the robots with more
sophisticated physiological and cognitive abilities. Although embodiment is not crucial
for the present implementation, we have adopted the embodied artificial intelligence
approach from the outset of this research because embodiment is a vital part of the types
of behaviour that we are hoping to observe in the future; such as, for example, the role of
gesture in the development of music. We are currently looking into the implementation of
a more sophisticated moving lips mechanism, which will be sensed by the visual system
of the imitating robot, thus adding more information for cognition. Information from
other sensors will also be used to provide greater immersion of the robots in the
environment. Eventually, we will have to move to more morphologically apt robotic
platforms (e.g. with a mechanical vocal tract or robots with arms and hands to play
instruments, etc.) so as to maximise the roles of embodiment and morphology in the
development of behaviour.

Acknowledgements

The author would like to thank the evolutionary music team at ICCMR for their
contribution to this research, particularly João Martins and Etienne Drouet, who took
active part in the implementation of the robotic simulations. Also, many thanks to Mark
Witkowski of the Department of Computing, Imperial College London, for his useful
comments on an early version of this paper. Many thanks to Springer Science and Business
Media for the kind permission to reprint the figures that appeared originally in the
author’s book Evolutionary Computer Music, 2007.

References

Blackwell, T.M., and Bentley, P.J. (2002). ‘Improvised Music with Swarms,’ in Proceedings of the

2002 Congress On Evolutionary Computation, pp. 462–1467.

Boersma, P. (1993) ‘Articulatory Synthesisers for the Simulations of Consonants,’ in Proceedings of

Eurospeech’93, pp. 1907–1910.

Burton, A.R. and Vladimirova, T. (1997). ‘A Genetic Algorithm Utilising Neural Network Fitness

Evaluation for Musical Composition,’ in Proceedings of the 1997 International Conference on

14 E.R. Miranda

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
P
l
y
m
o
u
t
h
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
6
:
3
6
 
1
4
 
A
u
g
u
s
t
 
2
0
0
8



Artificial Neural Networks and Genetic Algorithms, eds. G.D. Smith, N.C. Steele and R.F.

Albrecht, pp. 220–224.
Cope, D. (1996). Experiments in Musical Intelligence, Middleton: A-R Editions.
de Boer, B. (2001). The Origins of Vowel Systems, Oxford: Oxford University Press.
Fisher, R.A. (1930). The Genetical Theory of Natural Selection, Oxford: Clarendon Press.

Haldane, J.B.S. (1932). The Causes of Evolution, London: Longman Green.
Hunt, A., Orton, R. and Kirk, R. (1991). ‘Musical Applications for a Cellular Automata Music

Workstation,’ in Proceedings of the International Computer Music Conference (ICMC 91), pp.

165–168.
Huxley, J.S. (1942). Evolution: The Modern Synthesis, London: Allen and Unwin.

Locke, J.L. (1993). The Child’s Path to Spoken Language, Cambridge: Harvard University Press.
Miranda, E.R. (2002). Computer Sound Design: Synthesis Techniques and Programming, Oxford:

Elsevier/Focal Press.
Miranda, E.R. (2001). ‘Synthesising Prosody with Variable Resolution,’ in AES Convention Paper

5332, New York: Audio Engineering Society.
Miranda, E.R. (1993). ‘Cellular Automata Music: An Interdisciplinary Project,’ Interface, 22, 3–21.

Miranda, E.R., Kirby, S., and Todd, P. (2003). ‘On Computational Models of the Evolution of

Music: From the Origins of Musical Taste to the Emergence of Grammars,’ Contemporary

Music Review, 22, 91–111.
Mozer, M. (1994). ‘Neural Network Music Composition by Prediction: Exploring the Benefits of

Psychophysical Constraints and Multiscale Processing,’ Connection Science, 6, 247–280.
Papadopoulos, G. and Wiggins, G. (1998). ‘A Genetic Algorithm for the Generation of Jazz

Melodies,’ in Proceedings of the 8th Finnish Conference on Artificial Intelligence.
Rizzolatti, G., and Craighero, L. (2004). ‘The Mirror-Neuron System,’ Annual Review of

Neuroscience, 27, 169–192.

Robinson, F.N. (1975). ‘Vocal mimicry and the evolution of bird song,’ Emu – Austral

Ornithology, 75, 23–27.
Steedman, M. (1984). ‘A Generative Grammar for Jazz Chord Sequences,’ Music Perception, 2,

52–77.
Steels, L. (1997). ‘The Origins of Syntax in Visually Grounded Robotic Agents,’ in Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI’97).
P.M. Todd, and D.G. Loy, (eds.) (1991), Music and Connectionism, Cambridge: The MIT Press.

Westerman, G., and Miranda, E.R. (2003). ‘Modelling the Development of Mirror Neurons for

Auditory-Motor Intergration,’ Journal of New Music Research, 31, 367–375.

Appendix: The Interaction Algorithms and Settings

Algorithm 1: Robot-player produces an intonation

1. motor_control[�]( pick-any-motor-control in Motor-Repertoire(robot-player)

2. synthesise-sound(motor_control[�])

Algorithm 2: Robot-imitator produces an imitation

3. pitch_vector[�]( perceive-intonation

4. intonation[�]( perceptual representation(pitch_vector[�])
5. intonation[�]( search-similar(intonation[�]) in Perceptual-Repertoire(robot-imitator)
6. motor_control[�]( retrieve_motor_control (motor-control[intonation[�])
7. synthesise-sound(motor_control[�])
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Algorithm 3: Robot-player hears the imitation and gives a feedback

8. pitch_vector[c]( perceive-imitation

9. imitation[c]( perceptual-representation(picth_vector[c])
10. intonation[�]( search-similar(imitation[c]) in Perceptual-Repertoire(robot-imitator)
11. intonation[�]¼ perceptual-representation(motor_control[�])
12. IF intonation[�]¼ intonation[�]
13. THEN {feeback( positive
14. reinforce(motor_control[�] in Motor-Repertoire(robot-player)
15. reinforce(intonation[�]) in Perceptual-Repertoire(robot-player)}
16. ELSE {feeback( negative}
17. output-signal(feedback)

Algorithm 4: Robot-imitator reacts to robot-player’s feedback

18. IF feedback¼ positive

19. THEN {approximate(intonation[�]! intonation[�]) in Perceptual-Repertoire

(robot-imitator)
20. reconfigure_motor_control(intonation[�]) in Motor-Repertoire(robot-imitator)
21. reinforce intonation[�] in Perceptual-Repertoire(robot-imitator)
22. reinforce motor_control(�) in Motor-Repertoire(robot-imitator)}
23. ELSE IF feedback¼ negative
24. THEN IF success-history(intonation[�])4success-threshold
25. THEN {motor_control[�]( produce-new-motor-control
26. intonation[�]( perceptual representation(motor_control[�])
27. save-new(intonation[�]) to Motor-Repertoire(robot-imitator)
28. save-new(motor_control[�]) to Perceptual-Repertoire(robot-imitator)}
29. ELSE {distantiate(intonation[�]$ intonation[�]) in Perceptual-Repertoire

(robot-imitator)
30. reconfigure_motor_control(intonation[�]) in Motor-Repertoire(robot-

imitator)}

Algorithm 5: End of interaction updates

31. interaction-updates(robot-player)

32. interaction-updates(robot-imitator)

The frequency of the intonations ranges from 200Hz to 800Hz. The robots start every
simulation with one sound in their repertoire. Before terminating a round, both robots perform some
updates. Firstly they scan their repertoire and merge those sounds that are considered to be
perceptibly close to each other. Also, at the end of each round, both robots have a certain probability
Pb of undertaking a spring-cleaning to get rid of weak sounds; if a sound has been used more ET

times and has scored less than H% of its total use, then it is deleted. Finally, at the end of each
round, the robot-imitator has a certain probability Pa, the ‘creativity coefficient’, of adding a new
randomly created sound to its repertoire. In order to replicate the simulations reported in this paper,
the following settings may be used:

Creativity coefficient: Pa¼ probability of 1%
Forgetfulness disposition: Pb¼ probability of 20%
Success History threshold: H¼ 90% of the total number of times a given intonation was used
Erase threshold: ET¼ 50
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