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Abstract. We present a new technique for granular sampling using a pulse-
coupled network of spiking artificial neurons to generate grain events. The system 
plays randomly selected sound grains from a given sound sample when any one of 
a weakly coupled network of up to 1000 neurons fires. The network can exhibit 
loosely correlated temporal solutions and also collective synchronised behaviour. 
This leads to very interesting sonic results, particularly with regard to rhythmic 
textures which can be controlled with various parameters within the model. 

1   Brief Introduction to Granular Synthesis 

Granular synthesis works by generating a rapid succession of very short sound bursts 
called grains that together form larger sound events. The notion behind it is largely 
inspired by a sound representation method published in a paper by Dennis Gabor back 
in the 1940s [1]. Gabor’s point of departure was to acknowledge the fact that the ear 
has a time threshold for discerning sound properties. Below this threshold, different 
sounds are heard as clicks, no matter how different their spectra might be. The length 
and shape of a wavecycle define frequency and spectrum properties, but the ear needs 
several cycles to discern these properties. Gabor referred to this minimum sound 
length as an acoustic quantum and estimated that it usually falls between 10 and 30 
milliseconds, according to the nature of both the sound and the subject. 

2   Approaches to Granular Synthesis  

As far as the idea of sound grains is concerned, any synthesiser capable of producing 
rapid sequences of short sounds may be considered as a granular synthesiser. Three 
general approaches to granular synthesis can be identified as follows [2]: sequential, 
scattering and granular sampling approaches. The sequential approach works by syn-
thesising sequential grain streams. The length of the grains and the intervals between 
them are controllable, but the grains must not overlap. The scattering approach uses 
more than one generator simultaneously to scatter a fair amount of grains, not neces-
sarily in synchrony, as if they were the ‘dots’ of a ‘sonic spray’. The expression 
‘sound clouds’ is usually employed by musicians to describe the outcome of the scat-
tering approach. 
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Granular sampling employs a granulator mechanism that extracts small portions of 
a sampled sound and applies an envelope to them. The granulator may produce the 
grains in a number of ways. The simplest method is to extract only a single grain and 
replicate it many times. More complex methods involve the extraction of grains from 
various portions of the sample. In this case, the position of the extraction can be either 
randomly defined or controlled by an algorithm. 

Thus far, most granular synthesis systems have used stochastic methods to control 
the production of the grains; for example, a probability table holding waveform pa-
rameters can be called to provide synthesis values for each grain during the synthesis 
process. As an alternative method, we have devised Chaosynth, a granular synthesiser 
that uses cellular automata to manage the spectrum of the sound grains [3]. Chaosynth 
explored the emergent behaviour of cellular automata to produce coherent grain se-
quences with highly dynamic spectra.  

The challenge with granular sampling to find interesting and new controllable 
ways of playing back the grains, which are taken from the input sound sample. Grain 
events which are triggered independently will produce randomised signals which can 
have very interesting flow textural properties [4]. However in order to go beyond this 
one needs to look at introducing some kind of correlation in grain parameters whilst 
maintaining the inherent stochastic element which has been so effective in granular 
synthesis algorithms thus far. Chaosynth utilised the emergent behaviour of a cellular 
automata model in order to do this. Other attempts have looked at the collective prop-
erties of a large number of interacting particles, or swarms, to generate grain events 
[5]. In this work we have used the correlated firing properties of a large collection of 
pulse-coupled artificial neurons. 

Spiking neural networks have a very rich dynamics and the relevant timescales are 
of the same order as those relevant to granular synthesis. (i.e., on the level of milli-
seconds and tens of milliseconds). This makes them very suitable to use as a trigger-
ing mechanism for a granular sampler. There is great variety in the dynamics at the 
level of the single neuron and this becomes even more interesting when we look at 
networked systems. The single neurons can show regular spiking, bursting (very fast 
spiking) so-called chattering and resonant behaviour. When connected they exhibit 
collective excitations on timescales larger than the inherent responses of single neu-
rons (Fig. 1). Such collective excitations include synchronization of the firing times of 
large numbers of neurons in groups and repetition of signals over very large time 
scales (of the order of seconds) which have become known as Cortical Songs [6]. 

3   Spiking Neural Networks 

Essentially one can visualise a neuron as an object that fires a spike signal when its 
input voltage exceeds a certain threshold [7]. The amplitude of the spikes of real neu-
rons is of the order of 100mV (millivolts) and the duration of the spikes are of the 
order of 1-2ms. The spikes then travel to all the other (post-synaptic) neurons to which 
this (pre-synaptic) neuron is connected. The time taken for these spike signals to reach 
the post-synaptic neurons is also of the order of milliseconds. When one of the post-
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synaptic neurons receives a spike it will fire a spike in turn if its current voltage state 
plus the signal of the spike are above its threshold and so on. Most of this processing 
takes place in  the cortex. Each neuron in a mammalian cortex is typically connected to 
up to 10 000 other neurons so one can see quickly how complicated the resulting dy-
namics would be from simply sending out a single spike to just one neuron.  

The firing patterns of individual cortical neurons are known to be very varied. In 
Fig. 1 we can see twelve of the most common forms of mammalian cortical neuron 
firing. As far as the interaction of the neurons with other neurons is concerned, the 
class of spiking neuron models in which we are interested are called Pulse Coupled 
Neural Networks (PCCN). Essentially, this means that when a neuron receives a spike 
it updates its connection with all the neurons with which it is connected. In such mod-
els, the connections between neurons are modelled by a matrix of synaptic connec-
tions S = (sij), and these synaptic connections are used inherently in the dynamics. In 
this paper, we have used the simple condition that when the jth neuron fires, the mem-
brane potential, vi of the all the connected neurons immediately increases by sij [8]. 

 

Fig. 1. Twelve of the different types of firing patterns exhibited by single neurons in the mam-
malian cortex. (This figure is reproduced with permission from Eugene Izhikevich.) 

4   Izhikevich’s Pulse-Coupled Neural Model 

It has been recently discovered that surprisingly simple mathematical models of spik-
ing neurons with random connections can produce realistic organised collective be-
haviour. The model of Eugene Izhikevich [8] [10] contains enough detail to produce 
the rich firing patterns found in cortical neurons (Fig 1), yet is also computationally 
very efficient. 
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Fig. 2. Known types of neurons correspond to different values of the parameters a, b, c and d in 
Izhikevich’s model. Each inset shows a voltage response of the mode neuron to a step of dc-
current I=10 (bottom). (This figure is reproduced with permission from from Eugene Izhike-
vich.) 

The temporal firing patterns of the network show both stochastic and synchronised 
behaviour depending on the values of various parameters, the number of neurons, the 
matrix of synaptic connections and the history of the behaviour of the network. The 
frequencies of collective modes of the system are between 1 and 40Hz and present a 
very interesting case for controlling a granular sampler, particularly in terms of 
rhythmic structure. We therefore use Izhikevich’s model along with a granular sam-
pler such that grains of sounds (taken from a recording) are triggered when any of the 
neurons fire.  

The model contains N neurons, each of which are described by two dimensionless 
variables vi and ui where vi represents the membrane potential of the ith neuron and ui 
represents a membrane recovery variable, which provides negative feedback to vi. The 
system is then described by the following coupled ordinary (nonlinear) differential 
equations: 

dvi

dt
= 0.04vi

2 + 5vi + (140 − ui) + Ii     
(1) 

dui

dt
= a(bvi − ui)        

(2) 

with the following auxilliary after spike resetting; if vi ≥ 30 millivolts then vi→c and 
ui→( ui + d). Essentially, the first of these conditions means that when a neuron re-
ceives a spike input then its membrane potential is immediately reset.  



 Granular Sampling Using a Pulse-Coupled Network of Spiking Neurons 543 

 

The neurons are coupled to one another through a matrix of synaptic connection 
weights. These synaptic connection weights are given by the matrix S = (sij), such that 
the firing of the jth neuron instantaneously changes variable vi by sij. We have used a 
version of Izhikevich’s model where the matrix S is a random matrix. However, in 
other versions of the model, S can updated itself according to various learning algo-
rithms such as ‘Spike Timing Dependent Plasticity’ in which connections between 
neurons are reinforced according to temporal correlations. Synaptic currents or in-
jected dc-currents (currents which come from either other neurons or from sensory 
information) are encompassed within variable I (which in our version is also a random 
variable) and, a, b, c and d are parameters whose effects are summarised in Fig 2. 
Essentially, different values of these parameters produce different individual intrinsic 
neuron firing patterns such that complex spiking, bursting or chattering of cortical and 
thalamic neurons can be simulated.  

5   Controlling a Granular Sampler 

The algorithm by which the granular sampler works is straightforward: When a neu-
ron in the network fires at time t, a sound grain of random length (between 10-50ms) 
and random amplitude is taken from a random place in a recorded sample of sound 
and played back. The sound grain is convoluted within a Hanning envelope [11].  
Effectively, the neural network plays a granular sampler. Synchronized firing of neu-
rons sound like a pulse, whilst networks containing only a few neurons have a very 
interesting sparse rhythmic quality (between completely random and correlated. The 
system therefore has a very wide variety of temporal patterns and behaviours, which 
can be controlled according to the parameters in the mathematical model. One can 
control the parameters a, b, c and d, which determine the intrinsic properties of the 
neurons and one can control the number and type of neurons. In the current version, 
the connections are completely noisy in the sense that the matrix S is a random matrix 
and all current inputs are noisy. However it would be straightforward to extend the 
model by varying the connections and the input (‘thalamic’) current. Generally speak-
ing, increasing the number of neurons in the model means more firing and therefore 
more sonic texture, although when the solutions exhibit synchronous behaviour in-
creasing the number of neurons tends to lower the frequency of the collective re-
sponse. It is interesting in itself that such random (noisy) inputs can produce synchro-
nous pulses of sound. 

Generally speaking, in this version of the model (without any temporal correlation 
such as Spike Timing Dependent Plasticity [7]) one gets interesting sounds if we have 
either rather few (up to 10) or very many (over 500) neurons. The result with up to 10 
neurons sounds very sparse but one can hear rhythms, which appear and then tran-
siently die away. They do not repeat exactly; the network is effectively isolated from 
any sensory input (unlike real neurons in a mammalian cortex) and therefore not 
stimulated by correlated information. The synchronous solution appears in the dynam-
ics if all the neurons selected are the same and if there are more than 500 of them. 
This sounds like a very gritty pulse, especially if the selected grain size is short. 
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6   Concluding Remarks 

The technique we have introduced successfully fulfills the object of our enquiry in 
that its domain lies right in between the completely random and completely correlated 
in its temporal behaviour. Given a set of initial parameters, outputs are not predictable 
fully due to the large number of noisy elements in the model, but do follow discern-
able dynamical patterns especially when the system is in a dynamically synchronised 
state.  The output is also controllable to a large extent. There would seem to be much 
profitable study from looking at this method further. 
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